Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Cyclic glycyl-proline (cGP) exerts neuroprotective effects against ischemic stroke and may promote neural plasticity or network remodeling. We sought to determine to what extent oral administration of cGP could facilitate task learning in rats with ischemic lesions. We trained rats to perform a choice reaction time task using their forepaws. One week after changing the food to pellets containing cGP (no cGP: 0 mg/kg; low cGP: 25 mg/kg; and high cGP: 75 mg/kg), we made a focal ischemic lesion on the left or right forepaw area of the sensorimotor cortex. After recovery of task performance, we altered the correct-response side of the task, and then analyzed the number of training days required for the rat to reach a learning criterion (error rate < 15%) and the regulation of adult neurogenesis in the subventricular zones (SVZs), taking lesion size into account. The low-cGP group required fewer training days for task learning than the no-cGP group. Unexpectedly, rats with larger lesions required fewer training days in the no-cGP and low-cGP groups, but more training days in the high-cGP group. The number of Ki67-immunopositive cells (indicating proliferative cells) in ipsilesional SVZ increased more rapidly in the low-cGP and high-cGP groups than in the no-cGP group. However, lesion size had only a small effect on required training days and the number of Ki67-immunopositive cells. We conclude that oral administration of cGP can facilitate task learning in rats with focal ischemic infarction through neural plasticity and network remodeling, even with minimal neuroprotective effects. Copyright © 2021 Elsevier B.V. All rights reserved.

Citation

Hidekazu Kaneko, Masakazu Namihira, Shoko Yamamoto, Noriaki Numata, Koji Hyodo. Oral administration of cyclic glycyl-proline facilitates task learning in a rat stroke model. Behavioural brain research. 2022 Jan 24;417:113561

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34509530

View Full Text