Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Prostate cancer (Pca) is the most common cancer type among males worldwide. Dysregulation of Ca2+ signaling plays important roles during Pca progression. However, there is lack of information about the role of endolysosomal Ca2+ -permeable channels in Pca progression. The expression pattern of MCOLN2 was studied by immunohistochemistry and western blot. Cell viability assay, transwell assay and in vivo tumorigenesis were performed to evaluate the functional role of MCOLN2. Downstream targets of MCOLN2 were investigated by cytokine array, enzyme-linked immunosorbent assay, Ca2+ release experiments and luciferase reporter assays. We report that MCOLN2 expression is significantly elevated in Pca tissues, and associated with poor prognosis. Overexpression of MCOLN2 promoted Pca cells proliferation, migration and invasion. Importantly, knockdown of MCOLN2 inhibited Pca xenograft tumor growth and bone lesion development in vivo. In addition, MCOLN2 promoted the production and release of IL-1β. Moreover, luciferase reporter assay and western blot revealed that MCOLN2 promoted Pca development by regulating the IL-1β/NF-κB pathway. In summary, MCOLN2 is crucially involved in Pca progression. Mechanistically, MCOLN2 regulates Pca progression via IL-1β/NF-κB pathway. Our study highlights an intriguing possibility of targeting MCOLN2 as potential therapeutic strategy in Pca treatment. © 2021. The Author(s), under exclusive licence to Springer Nature Limited.

Citation

Hongyan Yu, Mingxu Xie, Zhaoyue Meng, Chun-Yin Lo, Franky Leung Chan, Liwen Jiang, Xiangqi Meng, Xiaoqiang Yao. Endolysosomal ion channel MCOLN2 (Mucolipin-2) promotes prostate cancer progression via IL-1β/NF-κB pathway. British journal of cancer. 2021 Nov;125(10):1420-1431

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34548638

View Full Text