Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Decades of literature indicate that the AMPA-type glutamate receptor is among the fastest acting of all neurotransmitter receptors. These receptors are located at excitatory synapses, and conventional wisdom says that they activate in hundreds of microseconds, deactivate in milliseconds due to their low affinity for glutamate and also desensitize profoundly. These properties circumscribe AMPA receptor activation in both space and time. However, accumulating evidence shows that AMPA receptors can also activate with slow, indefatigable responses. They do so through interactions with auxiliary subunits that are able promote a switch to a high open probability, high-conductance 'superactive' mode. In this review, we show that any assumption that this phenomenon is limited to heterologous expression is false and rather that slow AMPA currents have been widely and repeatedly observed throughout the nervous system. Hallmarks of the superactive mode are a lack of desensitization, resistance to competitive antagonists and a current decay that outlives free glutamate by hundreds of milliseconds. Because the switch to the superactive mode is triggered by activation, AMPA receptors can generate accumulating 'pedestal' currents in response to repetitive stimulation, constituting a postsynaptic mechanism for short-term potentiation in the range 5-100 Hz. Further, slow AMPA currents span 'cognitive' time intervals in the 100 ms range (theta rhythms), of particular interest for hippocampal function, where slow AMPA currents are widely expressed in a synapse-specific manner. Here, we outline the implications that slow AMPA receptors have for excitatory synaptic transmission and computation in the nervous system. © 2021 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

Citation

Niccolò P Pampaloni, Andrew J R Plested. Slow excitatory synaptic currents generated by AMPA receptors. The Journal of physiology. 2022 Jan;600(2):217-232

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34587649

View Full Text