Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

HSCR, a colonic neurocristopathy affecting 1/5000 births, is suggested to associate with cardiac septal defects and conotruncal malformations. However, we question subtle cardiac changes maybe more commonly present due to multi-regulations by HSCR candidate genes, in this instance, ETB. To investigate, we compared the cardiac morphology and quantitative measurements of sl/sl rat to those of the control group. Eleven neonatal rats were generated from heterozygote (ETB+/-) crossbreeding. Age and bodyweight were recorded at time of sacrifice. Diffusion-staining protocols with 1.5% iodine solution was completed prior to micro-CT scanning. All rats were scanned using an in vivo micro-CT scanner, Caliper Quantum FX, followed by two quality-control scans using a custom-built ex vivo micro-CT system. All scans were reviewed for gross cardiac dysmorphology. Micro-CT data were segmented semi-automatically post-NLM filtering for: whole-heart, LV, RV, LA, RA, and aortic arch. Measurements were taken with Drishti. Following image analysis, PCR genotyping of rats was performed: five sl/sl rats, three wildtype, and three heterozygotes. Statistical comparisons on organ volume, growth rate, and organ volume/bodyweight ratios were made between sl/sl and the control group. Cardiac morphology and constituents were preserved. However, significant volumetric reductions were recorded in sl/sl rats with respect to the control: whole heart (38.70%, p value = 0.02); LV (41.22%, p value = 0.01), RV (46.15%, p value = 0.02), LA (44.93%, p value = 0.06), and RA (39.49%, p value = 0.02). Consistent trend was observed in growth rate (~ 20%) and organ-volume/bodyweight ratios (~ 25%). On the contrary, measurements on aortic arch demonstrated no significant difference among the two groups. Despite the presence of normal morphology, significant cardiac growth retardation was detected in sl/sl rat, supporting the likely association of cardiac anomalies with HSCR, at least in ETB-/- subtype. Structural reduction was likely due to a combination of failure to thrive from enteric dysfunction, alterations to CaNCC colonization, and importantly coronary hypoperfusion from elevated ET-1/ETA-mediated hypervasoconstriction. Little correlation was detected between aortic arch development and sl/sl rat, supporting minor ETB role in large vessels. Although further clinical study is warranted, HSCR patients may likely require cardiac assessment in view of potential congenital cardiac defects. © 2021. The Author(s).

Citation

Ko-Chin Chen, Ko-Chien Chen, Zan-Min Song, Geoffrey D Croaker. Structural heart defects associated with ETB mutation, a cause of Hirschsprung disease. BMC cardiovascular disorders. 2021 Oct 02;21(1):475

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34600481

View Full Text