Correlation Engine 2.0
Clear Search sequence regions


filter terms:
Sizes of these terms reflect their relevance to your search.

Because the normal operation of the eye depends on sensitive morphogenetic processes for its eventual shape, developmental flaws can lead to wide-ranging ocular defects. However, the physical processes and mechanisms governing ocular morphogenesis are not well understood. Here, using analytical theory and nonlinear shell finite-element simulations, we show, for optic vesicles experiencing matrix-constrained growth, that elastic instabilities govern the optic cup morphogenesis. By capturing the stress amplification owing to mass increase during growth, we show that the morphogenesis is driven by two elastic instabilities analogous to the snap through in spherical shells, where the second instability is sensitive to the optic cup geometry. In particular, if the optic vesicle is too slender, it will buckle and break axisymmetry, thus, preventing normal development. Our results shed light on the morphogenetic mechanisms governing the formation of a functional biological system and the role of elastic instabilities in the shape selection of soft biological structures.

Citation

Jeong-Ho Lee, Harold S Park, Douglas P Holmes. Elastic Instabilities Govern the Morphogenesis of the Optic Cup. Physical review letters. 2021 Sep 24;127(13):138102

Expand section icon Mesh Tags


PMID: 34623834

View Full Text