Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Anemia is the most common hematological abnormality of chemotherapy, which is responsible for poor clinical outcomes. To overcome this complication, the present study was aimed for developing a Eudragit/polylactic-co-glycolic acid (PLGA) based nanoparticulate system for a model drug paclitaxel (PTX). The study was planned using a simplex lattice mixture design. PTX nanoparticles (PTXNp) were evaluated in vitro for physicochemical properties, hemolytic effects and cytotoxic effects. Further, the nanoparticles were subjected to in vivo screening using rats for hemocompatibility, pharmacokinetic profile, and biodistribution to the vital organs. The PTXNps were 65.77-214.73 nm in size, showed more than 60% sustained drug release in 360 h and caused less than 8% hemolysis. The parameters like red blood cell count, activated partial thromboplastin time (aPTT), prothrombin time (PT) and C3 complement were similar to the negative control. Cytotoxicity results suggested that all the PTXNp demonstrated drug concentration-dependent cytotoxicity. The in vivo pharmacokinetic study concluded that PTXNp formulations had significantly higher blood AUC (93.194.55-163,071.15 h*ng/mL), longer half-lives (5.80-6.35 h) and extended mean residence times (6.05-8.54 h) in comparison to PTX solution (p < 0.05). Overall, the study provides a nanoparticulate drug delivery system to deliver PTX safely and effectively along with reducing the associated hematological adverse effects. Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

Citation

Gunjan Jeswani, Lipika Chablani, Umesh Gupta, Rakesh K Sahoo, Kartik T Nakhate, Ajazuddin. Development and optimization of paclitaxel loaded Eudragit/PLGA nanoparticles by simplex lattice mixture design: Exploration of improved hemocompatibility and in vivo kinetics. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2021 Dec;144:112286

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34653755

View Full Text