Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Metabolic engineering often entails concurrent engineering of substrate utilization, central metabolism and product synthesis pathways, inevitably creating interdependency with native metabolism. Here we report an alternative approach using synthetic pathways for C1 bioconversion that generate multicarbon products directly from C1 units and hence are orthogonal to the host metabolic network. The engineered pathways are based on formyl-CoA elongation (FORCE) reactions catalysed by the enzyme 2-hydroxyacyl-CoA lyase. We use thermodynamic and stoichiometric analyses to evaluate FORCE pathway variants, including aldose elongation, α-reduction and aldehyde elongation. Promising variants were prototyped in vitro and in vivo using the non-methylotrophic bacterium Escherichia coli. We demonstrate the conversion of formate, formaldehyde and methanol into various products including glycolate, ethylene glycol, ethanol and glycerate. FORCE pathways also have the potential to be integrated with the host metabolism for synthetic methylotrophy by the production of native growth substrates as demonstrated in a two-strain co-culture system. © 2021. The Author(s), under exclusive licence to Springer Nature Limited.


Alexander Chou, Seung Hwan Lee, Fayin Zhu, James M Clomburg, Ramon Gonzalez. An orthogonal metabolic framework for one-carbon utilization. Nature metabolism. 2021 Oct;3(10):1385-1399

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 34675440

View Full Text