Correlation Engine 2.0
Clear Search sequence regions


  • Bdnf (1)
  • brain (2)
  • dendrite (1)
  • factor (1)
  • humans (2)
  • MeCP2 (10)
  • mecp2 protein (1)
  • mice (1)
  • morphogenesis (1)
  • neurons (1)
  • O GlcNAc (1)
  • patients (1)
  • protein level (1)
  • Sizes of these terms reflect their relevance to your search.

    Mutations of the X-linked methyl-CpG-binding protein 2 (MECP2) gene in humans are responsible for most cases of Rett syndrome (RTT), an X-linked progressive neurological disorder. While genome-wide screens in clinical trials have revealed several putative RTT-associated mutations in MECP2, their causal relevance regarding the functional regulation of MeCP2 at the etiologic sites at the protein level requires more evidence. In this study, we demonstrated that MeCP2 was dynamically modified by O-linked-β-N-acetylglucosamine (O-GlcNAc) at threonine 203 (T203), an etiologic site in RTT patients. Disruption of the O-GlcNAcylation of MeCP2 specifically at T203 impaired dendrite development and spine maturation in cultured hippocampal neurons, and disrupted neuronal migration, dendritic spine morphogenesis, and caused dysfunction of synaptic transmission in the developing and juvenile mouse cerebral cortex. Mechanistically, genetic disruption of O-GlcNAcylation at T203 on MeCP2 decreased the neuronal activity-induced induction of Bdnf transcription. Our study highlights the critical role of MeCP2 T203 O-GlcNAcylation in neural development and synaptic transmission potentially via brain-derived neurotrophic factor. © 2021. Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences.

    Citation

    Juanxian Cheng, Zhe Zhao, Liping Chen, Ying Li, Ruijing Du, Yan Wu, Qian Zhu, Ming Fan, Xiaotao Duan, Haitao Wu. Loss of O-GlcNAcylation on MeCP2 at Threonine 203 Leads to Neurodevelopmental Disorders. Neuroscience bulletin. 2022 Feb;38(2):113-134

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 34773221

    View Full Text