Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Technologies are needed to address contamination with energetic compounds at military installations. This research developed and evaluated novel and sustainable materials that can be used to remove munition constituents (MC) from stormwater runoff. Initial work focused on 3-nitro-1,2,4-triazol-5-one (NTO), as it is both highly soluble and ionized at environmentally relevant pH values. Screening cellulosic materials indicated that cationized (CAT) versions of pine shavings (pine, henceforth) and burlap (jute) demonstrated >70% removal of NTO from artificial surface runoff. CAT materials also demonstrated >90% removal of the anionic propellant perchlorate. NTO removal (~80%) by CAT pine was similar across initial pH values from 4 to 8.5 S.U. An inverse relationship was observed between NTO removal and the concentration of the major anions chloride, nitrate, and sulfate due to competition for anion binding sites. Sorption isotherms were performed using a mixture of the three primary legacy explosives (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), hexahydro-1,3,5-trinitro-s-triazine (RDX), 2,4,6-trinitrotoluene (TNT)), the three insensitive MC (nitroguanidine (NQ), NTO, 2,4-dinitroanisole (DNAN)), and perchlorate. Isotherm results indicated that effective removal of both legacy and insensitive MC would best be achieved using a mixture of peat moss plus one or more of the cationized cellulosic materials. Copyright © 2021 Elsevier B.V. All rights reserved.


Mark E Fuller, Erin M Farquharson, Paul C Hedman, Pei Chiu. Removal of munition constituents in stormwater runoff: Screening of native and cationized cellulosic sorbents for removal of insensitive munition constituents NTO, DNAN, and NQ, and legacy munition constituents HMX, RDX, TNT, and perchlorate. Journal of hazardous materials. 2022 Feb 15;424(Pt C):127335

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 34798548

View Full Text