Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Objective.To understand neural circuit dynamics, it is critical to manipulate and record many individual neurons. Traditional recording methods, such as glass microelectrodes, can only control a small number of neurons. More recently, devices with high electrode density have been developed, but few of them can be used for intracellular recording or stimulation in intact nervous systems. Carbon fiber electrodes (CFEs) are 8µm-diameter electrodes that can be assembled into dense arrays (pitches ⩾ 80µm). They have good signal-to-noise ratios (SNRs) and provide stable extracellular recordings both acutely and chronically in neural tissuein vivo(e.g. rat motor cortex). The small fiber size suggests that arrays could be used for intracellular stimulation.Approach.We tested CFEs for intracellular stimulation using the large identified and electrically compact neurons of the marine molluskAplysia californica. Neuron cell bodies inAplysiarange from 30µm to over 250µm. We compared the efficacy of CFEs to glass microelectrodes by impaling the same neuron's cell body with both electrodes and connecting them to a DC coupled amplifier.Main results.We observed that intracellular waveforms were essentially identical, but the amplitude and SNR in the CFE were lower than in the glass microelectrode. CFE arrays could record from 3 to 8 neurons simultaneously for many hours, and many of these recordings were intracellular, as shown by simultaneous glass microelectrode recordings. CFEs coated with platinum-iridium could stimulate and had stable impedances over many hours. CFEs not within neurons could record local extracellular activity. Despite the lower SNR, the CFEs could record synaptic potentials. CFEs were less sensitive to mechanical perturbations than glass microelectrodes.Significance.The ability to do stable multi-channel recording while stimulating and recording intracellularly make CFEs a powerful new technology for studying neural circuit dynamics. Creative Commons Attribution license.

Citation

Yu Huan, Jeffrey P Gill, Johanna B Fritzinger, Paras R Patel, Julianna M Richie, Elena Della Valle, James D Weiland, Cynthia A Chestek, Hillel J Chiel. Carbon fiber electrodes for intracellular recording and stimulation. Journal of neural engineering. 2021 Dec 14;18(6)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34826825

View Full Text