Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Occupational overexposure to manganese (Mn) produces Parkinson's disease-like manganism. Acute Mn intoxication in rats causes dopaminergic neuron loss, impairment of motor activity and reduction of the expression of Park2/Parkin. The expression of Park2/Parkin is also reduced. Whether these changes are reversible after cessation of Mn exposure is unknown, and is the goal of this investigation. Adult male rats were injected with Mn2+ at doses 1 mg/kg and 5 mg/kg in the form of MnCl2·4H2O, every other day for one-month to produce acute Mn neurotoxicity. For a half of rats Mn exposure was suspended for recovery for up to 5 months. Mn neurotoxicity was evaluated by the accumulation of Mn in blood and brain, behavioral activities, dopaminergic neuron loss, and the expression of Park2/Parkin in the blood cells and brain. Dose-dependent Mn neurotoxicity in rats was evidenced by Mn accumulation, rotarod impairments, reduction of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra, decreased level of Park2 mRNA in the blood and brain, and decreased Parkin protein in the brain. After cessation of Mn exposure, the amount of Park2 mRNA in the blood started to increase one month after the recovery. After 5-month of recovery, blood and brain Mn returned to normal, rotarod activity recovered, the reduction of TH-positive dopaminergic neurons ameliorated, and the level of Park2 mRNA in the blood and Park2/Parkin in the midbrain and striatum were returned to the normal. Mn neurotoxicity in rats is reversible after cessation of Mn exposure. The level of Park2 mRNA in the blood could be used as a novel biomarker for Mn exposure and recovery. © 2021. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Citation

Yu-Min Cao, Xi-Min Fan, Jie Xu, Jie Liu, Qi-Yuan Fan. Manganese Intoxication Recovery and the Expression Changes of Park2/Parkin in Rats. Neurochemical research. 2022 Apr;47(4):897-906

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34839452

View Full Text