Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Oxygen (O2) is essential for life and therefore the supply of sufficient O2 to the tissues is a major physiological challenge. In mammals, a deficit of O2 (hypoxia) triggers rapid cardiorespiratory reflexes (e.g. hyperventilation and increased heart output) that within a few seconds increase the uptake of O2 by the lungs and its distribution throughout the body. The prototypical acute O2-sensing organ is the carotid body (CB), which contains sensory glomus cells expressing O2-regulated ion channels. In response to hypoxia, glomus cells depolarize and release transmitters which activate afferent fibers terminating at the brainstem respiratory and autonomic centers. In this review, we summarize the basic properties of CB chemoreceptor cells and the essential role played by their specialized mitochondria in acute O2 sensing and signaling. We focus on recent data supporting a "mitochondria-to-membrane signaling" model of CB chemosensory transduction. The possibility that the differential expression of specific subunit isoforms and enzymes could allow mitochondria to play a generalized adaptive O2-sensing and signaling role in a wide variety of cells is also discussed.


José López-Barneo, Patricia Ortega-Sáenz. Mitochondrial acute oxygen sensing and signaling. Critical reviews in biochemistry and molecular biology. 2022 Apr;57(2):205-225

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 34852688

View Full Text