Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The promoting role that miR-18a-3p plays in osteoporosis (OP) has been previously described. However, the detailed mechanisms remain unclear. Bone tissues were collected from healthy patients, OP patients, and patients with osteoporotic spinal fractures. An osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) was constructed to detect the expression of miR-18a-3p and glutamate AMPA receptor subunit 1 (GRIA1). Alkaline phosphatase (ALP) activity and a qRT-PCR analysis were used to detect ALP content, alizarin red S staining was used to detect calcium deposition, and qRT-PCR was used to evaluate runt-related transcription factor 2 (RUNX2), osteocalcin (OCN), and osteopontin (OPN) expression levels. A dual-luciferase reporter and RNA pull-down assay was used to verify the targeted correlation between miR-18a-3p and GRIA1. We observed an increase in miR-18a-3p expression and a decrease in GRIA1 expression in OP and osteoporotic vertebral fracture patients. Upregulation of miR-18a-3p restrained the activity and expression of ALP in hBMSCs, inhibited the expression of RUNX2, OCN, and OPN, and inhibited calcium deposition. Knockdown of miR-18a-3p or upregulation of GRIA1 promoted osteogenic differentiation. Our findings indicate that miR-18a-3p promotes OP progression by regulating GRIA1 expression, suggesting that targeting miR-18a-3p/GRIA1 may be a therapeutic strategy for OP.

Citation

Meng Zhao, Junli Dong, Yuanmei Liao, Guoyong Lu, Wei Pan, Hansong Zhou, Xiaohua Zuo, Ben Shan. MicroRNA miR-18a-3p promotes osteoporosis and possibly contributes to spinal fracture by inhibiting the glutamate AMPA receptor subunit 1 gene (GRIA1). Bioengineered. 2022 Jan;13(1):370-382

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34937502

View Full Text