Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Beneficial rhizobacteria can stimulate changes in plant root development. Although root system growth is mediated by multiple factors, the regulated distribution of the phytohormone auxin within root tissues plays a principal role. Auxin transport facilitators help to generate the auxin gradients and maxima that determine root structure. Here, we show that the plant-growth-promoting rhizobacterial strain Bradyrhizobium japonicum IRAT FA3 influences specific auxin efflux transporters to alter Arabidopsis thaliana root morphology. Gene expression profiling of host transcripts in control and B. japonicum-inoculated roots of the wild-type A. thaliana accession Col-0 confirmed upregulation of PIN2, PIN3, PIN7, and ABCB19 with B. japonicum and identified genes potentially contributing to a diverse array of auxin-related responses. Cocultivation of the bacterium with loss-of-function auxin efflux transport mutants revealed that B. japonicum requires PIN3, PIN7, and ABCB19 to increase lateral root development and utilizes PIN2 to reduce primary root length. Accelerated lateral root primordia production due to B. japonicum was not observed in single pin3, pin7, or abcb19 mutants, suggesting independent roles for PIN3, PIN7, and ABCB19 during the plant-microbe interaction. Our work demonstrates B. japonicum's influence over host transcriptional reprogramming during plant interaction with this beneficial microbe and the subsequent alterations to root system architecture.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

Citation

Mercedes M Schroeder, Melissa Y Gomez, Nathan McLain, Emma W Gachomo. Bradyrhizobium japonicum IRAT FA3 Alters Arabidopsis thaliana Root Architecture via Regulation of Auxin Efflux Transporters PIN2, PIN3, PIN7, and ABCB19. Molecular plant-microbe interactions : MPMI. 2022 Mar;35(3):215-229

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34941379

View Full Text