Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Applications of terahertz time-domain spectroscopy (THz-TDS) in the fields of chemistry and biomedicine have recently received increased attention. Specifically, THz-TDS is particularly effective for the identification of alkaloid molecules, because it can distinguish the vibration types of base molecules in the THz band and provide a direct characteristic spectrum for the configuration and conformation of biomolecules. However, when THz-TDS technology is used to identify alkaloid molecules, most of them are concentrated in the 0.1-3.0 THz band, limiting the amount of information that can be obtained. In this work, a wide-spectrum THz-TDS system was independently built to explore the absorption spectra of uracil and its 5-substituents in the range of 1.3-6.0 THz. We found that, in the THz band, uracil and its 5-substituents have similar absorption peaks near 4.9 and 3.3 THz, while the 5-substituents have an additional absorption peak in the range of 1.5-2.5 THz. This absorption peak is red-shifted as the relative atomic mass of the 5-substituted atoms increases. Gaussian software was adopted to calculate the absorption spectra of the samples. The simulation conclusions were in good agreement with the experimental results, revealing that the vibration of the base molecule at low frequencies can be attributed to the inter-molecular vibration. This work demonstrates that THz-TDS technology can be used to accurately identify biomolecules with similar molecular structures, reflecting the importance of molecular structure in biological activity.

Citation

Kaixuan Li, Ding Li, Yan Zhang. Terahertz Spectral Properties of 5-Substituted Uracils. Sensors (Basel, Switzerland). 2021 Dec 11;21(24)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 34960387

View Full Text