In this study, Ethylenediamine tetraacetic acid (EDTA) embedded nanocellulose (NCED) has been used to study the adsorptive removal of methylene blue (MB) from simulated wastewater. The morphological characterizations have been checked with FESEM, FETEM, AFM, and BET pore analysis, while the fingerprinting of the material has been analyzed with the help of FTIR, Raman spectroscopy, EDS, XRD and TGA. For the experimental designing involving four parameters that affect the removal efficiency of MB, the layout has been prepared with the help of Central Composite Design (CCD). For the correlation among the parameters and their subsequent impact on the removal percentage, response surface methodology (RSM) has been employed. Maximum removal percentage of MB using NCED was found out to be 91.14%. The adsorption process was found to be good fit with the Langmuir isotherm and Elovich kinetics model. From the thermodynamics study, the spontaneity and the endothermic nature of the process was confirmed. With the help of all the obtained data and the associated removal efficiency, NCED could play a role of cost-effective and eco-friendly alternative to the expensive methods of toxic dye removal from wastewater. Copyright © 2021 Elsevier B.V. All rights reserved.
Tasrin Shahnaz, Das Bedadeep, Selvaraju Narayanasamy. Investigation of the adsorptive removal of methylene blue using modified nanocellulose. International journal of biological macromolecules. 2022 Mar 01;200:162-171
PMID: 34979188
View Full Text