Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The objective of this study was to identify predictable maternal serum signatures of cortisol metabolism during the first trimester of women who are expected to deliver small-for-gestational-age (SGA) neonates. This prospective cohort study included 112 pregnant women (with and without SGA, n = 56 each). Maternal serum samples were collected at 10-14 gestational weeks to quantify the levels of cortisol and its precursors and metabolites by liquid chromatography-mass spectrometry. Increased maternal serum levels of tetrahydrocortisol (11.82 ± 8.16 ng/mL vs. 7.51 ± 2.90 ng/mL, P < 0.005) and decreased 21-deoxycortisol (2.98 ± 1.36 ng/mL vs. 4.33 ± 2.06 ng/mL, P < 0.0001) were observed in pregnant women carrying SGA fetus. In conjunction with individual steroid levels, metabolic ratios corresponding to the activity of related enzymes were calculated. In addition to increased tetrahydrocortisol/cortisol ratio (P < 0.006), the SGA group showed a significant increase in the two metabolic ratios including cortisol/11-deoxycortisol (P < 0.03) and cortisol/21-deoxycortisol (P < 0.0003). The receiver operating characteristic (ROC) curve generated in combination with three variables of 21-deoxycortisol concentration and two metabolic ratios of cortisol/21-deoxycortisol and tetrahydrocortisol/cortisol resulted in an area under the ROC curve = 0.824 (95% confidence interval, 0.713-0.918). A significant decrease in maternal serum levels of 21-deoxycortisol and an increase in two metabolic ratios of cortisol/21-deoxycortisol and tetrahydrocortisol/cortisol, indicating cortisol biosynthetic rate, represent potential biomarkers for the prediction of SGA in the first trimester. © 2021. Society for Reproductive Investigation.

Citation

Chaelin Lee, Seung Mi Lee, Dong Jun Byun, So Yeon Kim, Hugh I Kim, Do Yup Lee, Young Mi Jung, Chan-Wook Park, Joong Shin Park, Man Ho Choi. Maternal Signatures of Cortisol in First Trimester Small-for-Gestational Age. Reproductive sciences (Thousand Oaks, Calif.). 2022 May;29(5):1498-1505

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35001327

View Full Text