Correlation Engine 2.0
Clear Search sequence regions


  • bacteria (1)
  • carbon (1)
  • donor (2)
  • ecosystem (2)
  • genomes (2)
  • nitrogen (17)
  • serratia (6)
  • soil (1)
  • spp (3)
  • sulfur (1)
  • Sizes of these terms reflect their relevance to your search.

    Biological nitrogen fixation (BNF) has important environmental implications in tailings by providing bioavailable nitrogen to these habitats and sustaining ecosystem functions. Previously, chemolithotrophic diazotrophs that dominate in mine tailings were shown to use reduced sulfur (S) as the electron donor. Tailings often contain high concentrations of As(III) that might function as an alternative electron donor to fuel BNF. Here, we tested this hypothesis and report on BNF fueled by As(III) oxidation as a novel biogeochemical process in addition to BNF fueled by S. Arsenic (As)-dependent BNF was detected in cultures inoculated from As-rich tailing samples derived from the Xikuangshan mining area in China, as suggested by nitrogenase activity assays, quantitative polymerase chain reaction, and 15N2 enrichment incubations. As-dependent BNF was also active in eight other As-contaminated tailings and soils, suggesting that the potential for As-dependent BNF may be widespread in As-rich habitats. DNA-stable isotope probing identified Serratia spp. as the bacteria responsible for As-dependent BNF. Metagenomic binning indicated that the essential genes for As-dependent BNF [i.e., nitrogen fixation, As(III) oxidation, and carbon fixation] were present in Serratia-associated metagenome-assembled genomes. Over 20 Serratia genomes obtained from NCBI also contained essential genes for both As(III) oxidation and BNF (i.e., aioA and nifH), suggesting that As-dependent BNF may be a widespread metabolic trait in Serratia spp.

    Citation

    Yongbin Li, Lifang Guo, Max M Häggblom, Rui Yang, Mengyan Li, Xiaoxu Sun, Zheng Chen, Fangbai Li, Xianfa Su, Geng Yan, Enzong Xiao, Haihan Zhang, Weimin Sun. Serratia spp. Are Responsible for Nitrogen Fixation Fueled by As(III) Oxidation, a Novel Biogeochemical Process Identified in Mine Tailings. Environmental science & technology. 2022 Feb 01;56(3):2033-2043

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35006678

    View Full Text