Correlation Engine 2.0
Clear Search sequence regions


filter terms:
Sizes of these terms reflect their relevance to your search.

The cyclopropane ring features prominently in active pharmaceuticals, and this has spurred the development of synthetic methodologies that effectively incorporate this highly strained motif into such molecules. As such, elegant solutions to prepare densely functionalized cyclopropanes, particularly ones embedded within the core of complex structures, have become increasingly sought-after. Here we report the stereospecific synthesis of a set of cyclopropanes with vicinal quaternary stereocenters via the solvent-free solid-state photodenitrogenation of crystalline 1-pyrazolines. Density functional theory calculations at the M062X/6-31+G(d,p) level of theory were used to determine the origin of regioselectivity for the synthesis of the 1-pyrazolines; favorable in-phase frontier molecular orbital interactions are responsible for the observation of a single pyrazoline regioisomer. It was also shown that the loss of N2 may take place via a highly selective solid-state thermal reaction. Scalability of the solid-state photoreaction is enabled through aqueous nanocrystalline suspensions, making this method a "greener" alternative to effectively facilitate the construction of cyclopropane-containing molecular scaffolds.

Citation

Trevor Y Chang, Daniel M Adrion, Alana Rose Meyer, Steven A Lopez, Miguel A Garcia-Garibay. A Green Chemistry Approach toward the Stereospecific Synthesis of Densely Functionalized Cyclopropanes via the Solid-State Photodenitrogenation of Crystalline 1-Pyrazolines. The Journal of organic chemistry. 2022 Mar 04;87(5):2277-2288

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35041410

View Full Text