Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Developments in applications such as rocket nozzles, miniature nuclear reactors and solar thermal generation pose high-density heat dissipation challenges. In these applications, a large amount heat must be removed in a limited space under high temperature. In order to handle this kind of cooling problem, this paper proposes liquid metal-based microchannel heat sinks. Using a numerical method, the flow and heat transfer performances of liquid metal-based heat sinks with different working fluid types, diverse microchannel cross-section shapes and various inlet velocities were studied. By solving the 3-D steady and conjugate heat transfer model, we found that among all the investigated cases, lithium and circle were the most appropriate choices for the working fluid and microchannel cross-section shape, respectively. Moreover, inlet velocity had a great influence on the flow and heat transfer performances. From 1 m/s to 9 m/s, the pressure drop increased as much as 65 times, and the heat transfer coefficient was enhanced by about 74.35%.

Citation

Tao Wu, Lizhi Wang, Yicun Tang, Chao Yin, Xiankai Li. Flow and Heat Transfer Performances of Liquid Metal Based Microchannel Heat Sinks under High Temperature Conditions. Micromachines. 2022 Jan 08;13(1)


PMID: 35056260

View Full Text