Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The repellency and toxicity of a CO2-derived cedarwood oil (CWO) was evaluated against actively questing unfed nymphs of four species of hard ticks: Amblyomma americanum (L.), Dermacentor variabilis (Say), Ixodes scapularis Say, and Rhipicephalus sanguineus (Latreille). Using a vertical climb bioassay for repellency, nymphs of these species avoided a CWO-treated filter paper in proportional responses to treatment concentrations. At 60 min of exposure, I. scapularis nymphs were most sensitive with 50% repellency concentration (RC50) of 19.8 µg cm-2, compared with RC50 of 30.8, 83.8 and 89.6 µg cm-2 for R. sanguineus, D. variabilis and A. americanum, respectively. Bioassays determined the lethal concentration for 50% (LC50) and 90% (LC90) mortality of nymphs exposed to CWO in treated vials after 24- and 48-h exposure. After 24 h exposure, the LC50 values were 1.25, 3.45 and 1.42 µg cm-2 and LC90 values were 2.39, 7.59 and 4.14 µg cm-2 for D. variabilis, I. scapularis and R. sanguineus, respectively, but had minimal effect on A. americanum. After 48 h exposure, the LC50 values were 4.14, 0.78, 0.79 and 0.52 µg cm-2, and LC90 values were 8.06, 1.48, 1.54 and 1.22 µg cm-2 for A. americanum, D. variabilis, I. scapularis and R. sanguineus, respectively. The repellency of CWO on tick species decreased with time. The repellency and toxicity bioassays demonstrated concentration-dependent responses of tick nymphs to the oil, indicating the potential of the CO2-derived cedarwood oil be developed as an eco-friendly repellent and/or acaricide. © 2022. This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply.

Citation

Lina B Flor-Weiler, Robert W Behle, Fred J Eller, Ephantus J Muturi, Alejandro P Rooney. Repellency and toxicity of a CO2-derived cedarwood oil on hard tick species (Ixodidae). Experimental & applied acarology. 2022 Feb;86(2):299-312

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35076809

View Full Text