Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Succinate dehydrogenase inhibitors (SDHIs) fungicides are used to control Asian soybean rust (Phakopsora pachyrhizi), and the SdhC-I86F mutation is related to pathogen resistance. The objective of this study was to determine whether fitness penalties are associated with SDHI resistance (SdhC-I86F mutation) in P. pachyrhizi populations. Moreover, the study investigated whether the SdhC-I86F mutation remained stable after the fungus propagation both in the absence and presence of fungicide. The populations used in this study presented mutations for all genes analyzed (Cyp51, Cytb, and SdhC), except for a wild-type population (WTSdhC) found with no SdhC-I86F mutation. The frequencies of the SdhC-I86F mutant populations were stable after 36 generations in the absence of fungicide. However, in the case of the WTSdhC population, the SdhC-I86F mutation was further detected after one generation of the fungus in the presence of the SDHI fungicide, according to the results of a detached leaf assay. Three tests were performed to evaluate fitness components and sensitivity to fungicides (half maximal effective concentration). SdhC-I86F mutant populations were more sensitive to osmotic and oxidative stress than the WTSdhC population; however, the sensitivity to ultraviolet radiation was similar for both populations. All mutated populations were less sensitive than the WTSdhC when using SDHI (azoxystrobin + benzovindiflupyr), but more sensitive to mancozeb. The presence of fitness penalties, the mutation stability, and the sensitivity to mancozeb presented by the SdhC-I86F mutant populations can be relevant to the management of the disease in the field.

Citation

Alexandre Claus, Kelly Simões, Louise L May De Mio. SdhC-I86F Mutation in Phakopsora pachyrhizi Is Stable and Can Be Related to Fitness Penalties. Phytopathology. 2022 Jul;112(7):1413-1421

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35080435

View Full Text