Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

L-alanine possesses extensive physiological functionality and tremendous pharmacological significance, therefore could be considered as potential ingredient for food, pharmaceutical, and personal care products. However, therapeutic properties of L-alanine still need to be addressed in detail to further strengthen its utilization as a viable ingredient for developing natural therapeutics with minimum side effects. Thus, the present study was aimed to explore the anticipated therapeutic potential of L-alanine, produced microbially using a lactic acid bacterial strain Pediococcus acidilactici BD16 (alaD+) expressing L-alanine dehydrogenase enzyme. The anticipated therapeutic potential of L-alanine was assessed in terms of anti-proliferative, anti-bacterial, and anti-urolithiatic properties. Anti-bacterial assays revealed that L-alanine successfully inhibited growth and in vitro proliferation of important human pathogens including Enterococcus faecalis, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, Streptococcus mutans, and Vibrio cholerae in a concentration-dependent manner. Current investigation has also revealed its significant anti-proliferative potential against human lung adenocarcinoma (A549; IC50 7.32 μM) and mammary gland adenocarcinoma (MCF-7; IC50 8.81 μM) cells. The anti-urolithiatic potential of L-alanine was augmented over three different phases, viz., nucleation inhibition, aggregation inhibition, and oxalate depletion. Further, an in vitro cell culture-based kidney stone dissolution model using HEK293-T cells was also established to further strengthen its anti-urolithiatic potential. This is probably the first in vitro cell culture-based model which experimentally validates the immense therapeutic efficacy of L-alanine in treating urolithiasis disease. KEY POINTS: • Assessment of therapeutic potential of L-alanine produced by LAB. • L-alanine exhibited significant anti-proliferative and anti-bacterial activities. • L-alanine as potential anti-urolithiatic agent. © 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.


Anshula Sharma, Vikrant Mehta, Suman Rani, Masafumi Noda, Masanori Sugiyama, Harish Chander, Baljinder Kaur. Biomedical applications of L-alanine produced by Pediococcus acidilactici BD16 (alaD+). Applied microbiology and biotechnology. 2022 Feb;106(4):1435-1446

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 35089399

View Full Text