Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Pax6, a multifunctional protein and a transcriptional regulator is critical for optimal functioning of neuronal cells. It is known that alternatively spliced Pax6 isoforms and co-expressed interacting proteins mediate cell/tissue specific autoregulation of Pax6, however, underlying mechanism(s) are poorly understood. We used Neuro-2a cells to explore the mechanism of autoregulation of Pax6 in neuronal cells whereas NIH/3T3 cells were used as control. We first studied the transcript expression of the three Pax6 isoforms: Pax6, Pax6(5a), and Pax6(ΔPD); and the two co-expressed Pax6-interacting partners: SPARC and p53 in normal and overexpressed conditions, through the semi-quantitative RT-PCR. Further, we used the luciferase reporter assay to study the binding and transactivation of the three Pax6 isoforms: Pax6, Pax6(5a), and Pax6(ΔPD) to their respective promoters: P0, P1, and Pα; followed by that of the two co-expressed Pax6-interacting partners: SPARC and p53 to the Pax6-P1 promoter. Expression and distribution of Pax6, Pax6(5a) and Pax6(ΔPD), their binding to Pax6-promoters (P0, P1, and Pα) and transactivation were modulated in transfected Neuro-2a cells. Our results suggest that autoregulation of Pax6 in neuronal cells is driven by a promoter dependent mechanism which is mediated by spliced variants [Pax6(5a) and Pax6(ΔPD)] and interacting proteins (SPARC and p53) of Pax6. © 2022. The Author(s), under exclusive licence to Springer Nature B.V.

Citation

Sachin Shukla, Rajnikant Mishra. Autoregulation of Pax6 in neuronal cells is mediated by Pax6(5a), Pax6(ΔPD), SPARC, and p53. Molecular biology reports. 2022 Apr;49(4):3271-3279

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35103896

View Full Text