Correlation Engine 2.0
Clear Search sequence regions


  • apoptosis (3)
  • BAK (8)
  • BAK1 protein (1)
  • BAX (8)
  • bax protein (1)
  • bcl 2 (4)
  • bcl- x protein (1)
  • humans (1)
  • protein human (2)
  • Sizes of these terms reflect their relevance to your search.

    BAX and BAK are key apoptosis regulators that mediate the decisive step of mitochondrial outer membrane permeabilization. However, the mechanism by which they assemble the apoptotic pore remains obscure. Here, we report that BAX and BAK present distinct oligomerization properties, with BAK organizing into smaller structures with faster kinetics than BAX. BAK recruits and accelerates BAX assembly into oligomers that continue to grow during apoptosis. As a result, BAX and BAK regulate each other as they co-assemble into the same apoptotic pores, which we visualize. The relative availability of BAX and BAK molecules thereby determines the growth rate of the apoptotic pore and the relative kinetics by which mitochondrial contents, most notably mtDNA, are released. This feature of BAX and BAK results in distinct activation kinetics of the cGAS/STING pathway with implications for mtDNA-mediated paracrine inflammatory signaling. Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

    Citation

    Katia Cosentino, Vanessa Hertlein, Andreas Jenner, Timo Dellmann, Milos Gojkovic, Aida Peña-Blanco, Shashank Dadsena, Noel Wajngarten, John S H Danial, Jervis Vermal Thevathasan, Markus Mund, Jonas Ries, Ana J Garcia-Saez. The interplay between BAX and BAK tunes apoptotic pore growth to control mitochondrial-DNA-mediated inflammation. Molecular cell. 2022 Mar 03;82(5):933-949.e9

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35120587

    View Full Text