Correlation Engine 2.0
Clear Search sequence regions


filter terms:
  • climate (3)
  • drought (12)
  • self (1)
  • Sizes of these terms reflect their relevance to your search.

    Continuous Global Navigation Satellite System (GNSS) measurements allow us to track subtle elastic crustal deformation in the response to hydrological mass variations and provide an additional tool to independently characterize hydrological extremes (e.g., droughts and floods). In this study, we develop a time-varying GNSS imaging strategy that depends on the principal component analysis of GNSS-sensed vertical crustal displacement (VCD) in 2006-2020 and the monthly images of hydrology-induced deformation are generated for drought characterization across the contiguous United States. The first 12 principal components are selected in our time-varying imaging system, which account for 85% of the data variance. Considering that surface water loads are inversely correlated with the induced elastic vertical motions, we reverse the signs of the GNSS-imaged time series in all grids in subsequent studies (referred to as negative VCD (NVCD)). The GNSS-NVCD data generally correlate well with the water estimates from the Gravity Recovery and Climate Experiment (GRACE) and North American Land Data Assimilation System (NLDAS). Using the GNSS-imaged gridded NVCD products, we produce a GNSS-based drought severity index (GNSS-DSI) based on the climatological methodology, which is implemented by standardizing the GNSS NVCD anomalies that deviate from climatological normal. In most regions, strong linear correlations are accessible for GNSS-DSI relative to GRACE-DSI and the self-calibrating Palmer Drought Severity Index (scPDSI). The new drought monitoring tool, which is based solely on GNSS-measured vertical positions, is used for hydrological drought characterization (onset, end, duration, magnitude, intensity, and recovery); it succeeds in identifying well-documented historical droughts from the US drought monitor (USDM). Our study presents a new drought characterization framework using solely GNSS-measured hydrological loading displacements from a dense GNSS network, which has great potential to strengthen operational drought monitoring and assessment. Copyright © 2022 Elsevier B.V. All rights reserved.

    Citation

    Zhongshan Jiang, Ya-Ju Hsu, Linguo Yuan, Miao Tang, Xinchun Yang, Xinghai Yang. Hydrological drought characterization based on GNSS imaging of vertical crustal deformation across the contiguous United States. The Science of the total environment. 2022 Jun 01;823:153663

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35124040

    View Full Text