Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The Synechococcales is a large cyanobacterial order comprising both unicellular and filamentous forms, with parietal thylakoid arrangement. Previously, this order has been the subject of taxonomic revisions with new families being erected. During studies of the phototrophic communities on the limestone walls of the Old Cathedral of Coimbra (UNESCO monument), a coccoid Aphanocapsa-like cyanobacterium was isolated. It was characterized using a polyphasic approach, based on morphology, 16S rRNA phylogenetic and phylogenomic analyses, internal transcribed spacer (ITS) secondary structure, and ecology. The 16S rRNA phylogenetic analyses showed that this strain is placed in a separate and highly supported family-level clade, as part of a large group comprising the families Prochlorococcaceae and Prochlorotrichaceae, with Lagosinema as the closest (although quite distant) taxon. Additionally, the phylogenomic analysis also placed this strain in a separate lineage, situated distantly apart from the family Thermosynechococcaceae, but with strains assigned to Acaryochloris marina MBIC 11017 and Aphanocapsa montana BDHKU210001 as the closest taxa. Based on these data, as well as on the results from the secondary ITS structure, morphology, and ecology, we here propose the establishment of Petrachlorosaceae fam. nov., along with the description of Petrachloros gen. nov. and Petrachloros mirabilis sp. nov. We also address additional considerations regarding some cyanobacterial taxa within the order Synechococcales, which we believe deserve further revisions. © 2022 Phycological Society of America.

Citation

Fabiana Soares, João Trovão, Anne-Catherine Ahn, Annick Wilmotte, Susana M Cardoso, Igor Tiago, António Portugal. Introducing Petrachlorosaceae fam. nov., Petrachloros gen. nov. and Petrachloros mirabilis sp. nov. (Synechococcales, Cyanobacteria) Isolated from a Portuguese UNESCO monument. Journal of phycology. 2022 Apr;58(2):219-233

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35133645

View Full Text