Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Interactions of zinc finger (ZF) proteins with nucleic acids and proteins play an important role in DNA transcription and repair, biochemical recognition, and protein regulation. The release of Zn2+ through oxidation of cysteine thiolates is associated with disruption of gene expression and DNA repair, preventing tumor growth. Multi-microsecond molecular dynamics (MD) simulations were carried out to examine the effect of Cys oxidation on the ZF456 fragment of transcription factor III A (TFIIIA) and its complex with 5S RNA. In the absence of 5S RNA, the reduced ZF456 peptide undergoes conformational changes in the secondary structure due to the reorientation of the intact ZF domains. Upon oxidation, the individual ZF domains unfold to various degrees, yielding a globular ZF456 peptide with ZF4 and ZF6, responsible for base-specific hydrogen bonds with 5S RNA, losing their ββα-folds. ZF5, on the other hand, participates in nonspecific interactions through its α-helix that conditionally unravels early in the simulation. In the presence of RNA, oxidation of the ZF456 peptide disrupts the key hydrogen bonding interactions between ZF5/ZF6 and 5S RNA. However, interactions with ZF4 are dependent on the protonation state of His119.

Citation

Ana Dreab, Craig A Bayse. Molecular Dynamics Simulations of Reduced and Oxidized TFIIIA Zinc Fingers Free and Interacting with 5S RNA. Journal of chemical information and modeling. 2022 Feb 28;62(4):903-913

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35143196

View Full Text