Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Stomata optimize land plants' photosynthetic requirements and limit water vapor loss. So far, all of the molecular and electrical components identified as regulating stomatal aperture are produced, and operate, directly within the guard cells. However, a completely autonomous function of guard cells is inconsistent with anatomical and biophysical observations hinting at mechanical contributions of epidermal origins. Here, potassium (K+) assays, membrane potential measurements, microindentation, and plasmolysis experiments provide evidence that disruption of the Arabidopsis thaliana K+ channel subunit gene AtKC1 reduces pavement cell turgor, due to decreased K+ accumulation, without affecting guard cell turgor. This results in an impaired back pressure of pavement cells onto guard cells, leading to larger stomatal apertures. Poorly rectifying membrane conductances to K+ were consistently observed in pavement cells. This plasmalemma property is likely to play an essential role in K+ shuttling within the epidermis. Functional complementation reveals that restoration of the wild-type stomatal functioning requires the expression of the transgenic AtKC1 at least in the pavement cells and trichomes. Altogether, the data suggest that AtKC1 activity contributes to the building of the back pressure that pavement cells exert onto guard cells by tuning K+ distribution throughout the leaf epidermis. © American Society of Plant Biologists 2022. All rights reserved. For permissions, please email: journals.permissions@oup.com.

Citation

Manuel Nieves-Cordones, Farrukh Azeem, Yuchen Long, Martin Boeglin, Geoffrey Duby, Karine Mouline, Eric Hosy, Alain Vavasseur, Isabelle Chérel, Thierry Simonneau, Frédéric Gaymard, Jeffrey Leung, Isabelle Gaillard, Jean-Baptiste Thibaud, Anne-Aliénor Véry, Arezki Boudaoud, Hervé Sentenac. Non-autonomous stomatal control by pavement cell turgor via the K+ channel subunit AtKC1. The Plant cell. 2022 Apr 26;34(5):2019-2037

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35157082

View Full Text