Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Executor (E) genes comprise a new type of plant resistance (R) genes, identified from host-Xanthomonas interactions. The Xanthomonas-secreted transcription activation-like effectors (TALEs) usually function as major virulence factors, which activate the expression of the so-called "susceptibility" (S) genes for disease development. This activation is achieved via the binding of the TALEs to the effector-binding element (EBE) in the S gene promoter. However, host plants have evolved EBEs in the promoters of some otherwise silent R genes, whose expression directly causes a host cell death that is characterized by a hypersensitive response (HR). Such R genes are called E genes because they trap the pathogen TALEs in order to activate expression, and the resulting HR prevents pathogen growth and disease development. Currently, deploying E gene resistance is becoming a major component in disease resistance breeding, especially for rice bacterial blight resistance. Currently, the biochemical mechanisms, or the working pathways of the E proteins, are still fuzzy. There is no significant nucleotide sequence homology among E genes, although E proteins share some structural motifs that are probably associated with the signal transduction in the effector-triggered immunity. Here, we summarize the current knowledge regarding TALE-type avirulence proteins, E gene activation, the E protein structural traits, and the classification of E genes, in order to sharpen our understanding of the plant E genes.


Zhiyuan Ji, Wei Guo, Xifeng Chen, Chunlian Wang, Kaijun Zhao. Plant Executor Genes. International journal of molecular sciences. 2022 Jan 28;23(3)

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 35163443

View Full Text