Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

ASAP1 is a multi-domain adaptor protein that regulates cytoskeletal dynamics, receptor recycling and intracellular vesicle trafficking. Its expression is associated with poor prognosis in a variety of cancers, and can promote cell migration, invasion and metastasis. Although amplification and expression of ASAP1 has been associated with poor survival in breast cancer, we found that in the autochthonous MMTV-PyMT model of luminal breast cancer, ablation of ASAP1 resulted in an earlier onset of tumor initiation and increased metastasis. This was due to tumor cell-intrinsic effects of ASAP1 deletion, as ASAP1 deficiency in tumor, but not in stromal cells was sufficient to replicate the enhanced tumorigenicity and metastasis observed in the ASAP1-null MMTV-PyMT mice. Loss of ASAP1 in MMTV-PyMT mice had no effect on proliferation, apoptosis, angiogenesis or immune cell infiltration, but enhanced mammary gland hyperplasia and tumor cell invasion, indicating that ASAP1 can accelerate tumor initiation and promote dissemination. Mechanistically, these effects were associated with a potent activation of AKT. Importantly, lower ASAP1 levels correlated with poor prognosis and enhanced AKT activation in human ER+/luminal breast tumors, validating our findings in the MMTV-PyMT mouse model for this subtype of breast cancer. Taken together, our findings reveal that ASAP1 can have distinct functions in different tumor types and demonstrate a tumor suppressive activity for ASAP1 in luminal breast cancer. Copyright © 2022 Elsevier B.V. All rights reserved.


Caroline Schreiber, Annette Gruber, Sven Roßwag, Supriya Saraswati, Shannon Harkins, Wilko Thiele, Zahra Hajian Foroushani, Natalie Munding, Anja Schmaus, Melanie Rothley, Arno Dimmler, Motomu Tanaka, Boyan K Garvalov, Jonathan P Sleeman. Loss of ASAP1 in the MMTV-PyMT model of luminal breast cancer activates AKT, accelerates tumorigenesis, and promotes metastasis. Cancer letters. 2022 May 01;533:215600

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 35181478

View Full Text