Correlation Engine 2.0
Clear Search sequence regions


  • blood urea nitrogen (2)
  • DRP1 (2)
  • electron (2)
  • eosin (1)
  • female (1)
  • FIS1 (2)
  • humans (1)
  • ischaemia (6)
  • mice knockout (2)
  • OPA1 (2)
  • protein human (1)
  • protein levels (3)
  • renal fibrosis (4)
  • serum (3)
  • SIRT3 (13)
  • Sizes of these terms reflect their relevance to your search.

    Sirtuin 3 (SIRT3) is a crucial regulator of mitochondrial function and is associated with injury and repair in acute kidney injury (AKI). To investigate whether mitochondrial damage and early renal fibrosis are associated with decreased renal SIRT3 levels, we established an in vivo model. In vivo, we established ischaemia-reperfusion-induced AKI (IR-AKI) models in wild-type (WT) and SIRT3-knockout (SIRT3-KO) mice. Serum creatinine (Scr) and blood urea nitrogen (BUN) were measured by an automatic biochemical analyser, and renal pathological changes were examined by haematoxylin and eosin (HE) staining. Renal fibrosis in mice was assessed by Masson's trichrome staining. The expression of SIRT3, renal fibrosis-related markers (FN and α-SMA), and mitochondrial markers (DRP1, FIS1, OPA1, and MFN1) was measured by Western blotting. Morphological changes in mitochondria in renal tubular epithelial cells were analysed by transmission electron microscopy (TEM). The levels of Scr and BUN were elevated with severe renal pathological damage in the IR-AKI model, especially in SIRT3-KO mice. In the IR-AKI model, the obvious increases in FN and α-SMA protein levels suggested that there was severe fibrosis in the kidney tissue, OPA1 and MFN1 protein levels were reduced while DRP1 and FIS1 protein levels were greatly increased. TEM photomicrographs showed that mitochondrial fragmentation was increased in the renal tubular epithelial cells of mice with IR injury. SIRT3-KO mice exhibited exacerbated changes. Our findings indicate that SIRT3 plays a significant role in early-stage fibrosis after IR-AKI by regulating mitochondrial dynamics and that SIRT3 deficiency exacerbates renal dysfunction and renal fibrosis. Copyright © 2022 Elsevier Inc. All rights reserved.

    Citation

    Lingli Cheng, Xueyan Yang, Yonghong Jian, Jie Liu, Xinyu Ke, Sha Chen, Dingwei Yang, Dingping Yang. SIRT3 deficiency exacerbates early-stage fibrosis after ischaemia-reperfusion-induced AKI. Cellular signalling. 2022 May;93:110284

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35182747

    View Full Text