Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Simultaneous biodegradation of malodorous 1-propanethiol (PT) and dimethyl sulfide (DMS) by Pseudomonas putida S-1 and Alcaligenes sp. SY1 was investigated and the interactions implicated were explored. Results showed that PT was completely degraded in 33 h, while a lag of 10 h was observed for DMS degradation alone, and the lag was even extended to 81 h in the binary mixture. Mechanism analysis found that the lag was mainly attributed to the exposure of DMS degrader (Alcaligenes sp. SY1), rather than PT metabolites and PT degrader. The exposure time and PT concentration also influenced the lag duration much. Citric acid could effectively reduce the lag. Pseudo-first-order model was proved suitable for the description of PT degradation, revealing that PT degradation could be enhanced in presence of DMS with a concentration of < 50 mg L-1. A modified Gompertz model, incorporated the lag phase, was developed for the description of DMS degradation in the mixture, revealing that DMS degradation depended on the initial PT concentration, and when the lag was not considered, PT with low-concentration could promote DMS biodegradation, while a higher concentration (> 20 mg L-1) cast negative effect. © 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Citation

Qian Li, Zeqin Tang, Jiahui Zhang, Jingtao Hu, Jianmeng Chen, Dongzhi Chen. Simultaneous biodegradation of dimethyl sulfide and 1-propanethiol by Pseudomonas putida S-1 and Alcaligenes sp. SY1: "Lag" cause, reduction, and kinetics exploration. Environmental science and pollution research international. 2022 Jul;29(32):48638-48647

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35195861

View Full Text