Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Some mustard compounds (mustards) are highly toxic chemical warfare agents. Some are explored as new anticancer drugs. Therefore, the fast, selective, and sensitive detection of mustards is extremely important for public security and cancer therapy. Mustards mostly target the N7 position on the guanine bases of DNA. The guanine-rich G-quadruplex DNA (G4) has been widely studied in the sensing area, and it was found that dimeric G4 (D-G4) could dramatically light up the fluorescence intensity of thioflavin T (ThT). Based on this, we used for the first time the D-G4 DNA as a selective probe for ultrasensitive fluorescence detection of nitrogen mustard (NM). When NM occupies the N7 on guanine, it can block the formation of the D-G4 structure due to the steric hindrance, and hence, it inhibits the combination of D-G4 with ThT, leading to a sharp decrease of fluorescence intensity. The proposed reaction mechanism is proved using ultraviolet-visible (UV-Vis) spectra, circular dichroism (CD) spectra, and polyacrylamide gel electrophoresis. Herein, the concentration of D-G4/ThT used is as low as 50 nM due to its highly fluorescent performance, enabling both high sensitivity and low cost. NM can be detected with a wide linear range from 10 to 2000 nM. The detection limit of NM reaches a surprisingly low concentration of 6 nM, which is 2 or 3 orders of magnitude lower than that of previously developed fluorescence methods for mustards and simulants.

Citation

Xiangui Ma, Mengmeng Lv, Fangxin Du, Cunqi Wu, Baohua Lou, Abdallah M Zeid, Guobao Xu. Dimeric G-Quadruplex: An Efficient Probe for Ultrasensitive Fluorescence Detection of Mustard Compounds. Analytical chemistry. 2022 Mar 08;94(9):4112-4118

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35196002

View Full Text