Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Levodopa (L-Dopa) is considered to be one of the most effective therapies available for Parkinson's disease (PD) treatment. The therapeutic window of L-Dopa is narrow due to its short half-life, and long-time L-Dopa treatment will cause some side effects such as dyskinesias, psychosis, and orthostatic hypotension. Therefore, it is of great significance to monitor the dynamic concentration of L-Dopa for PD patients with wearable biosensors to reduce the risk of complications. However, the high concentration of interferents in the body brings great challenges to the in vivo monitoring of L-Dopa. To address this issue, we proposed a minimal-invasive L-Dopa biosensor based on a flexible differential microneedle array (FDMA). One working electrode responded to L-Dopa and interfering substances, while the other working electrode only responded to electroactive interferences. The differential current response of these two electrodes was related to the concentration of L-Dopa by eliminating the common mode interference. The differential structure provided the sensor with excellent anti-interference performance and improved the sensor's accuracy. This novel flexible microneedle sensor exhibited favorable analytical performance of a wide linear dynamic range (0-20 μM), high sensitivity (12.618 nA μM-1 cm-2) as well as long-term stability (two weeks). Ultimately, the L-Dopa sensor displayed a fast response to in vivo L-Dopa dynamically with considerable anti-interference ability. All these attractive performances indicated the feasibility of this FDMA for minimal invasive and continuous monitoring of L-Dopa dynamic concentration for Parkinson's disease.

Citation

Lu Fang, Hangxu Ren, Xiyu Mao, Shanshan Zhang, Yu Cai, Shiyi Xu, Yi Zhang, Lihua Li, Xuesong Ye, Bo Liang. Differential Amperometric Microneedle Biosensor for Wearable Levodopa Monitoring of Parkinson's Disease. Biosensors. 2022 Feb 07;12(2)

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35200363

View Full Text