Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Aromatic α-halohydrins, especially 2-haloethanols, which are a common pharmacological precursor, may be readily transformed to chiral β-adrenergic receptor blockers. Studies including the synthesis of (S)-2-bromo-1-(naphthalen-2-yl)ethanol ((S)-2), an α-halohydrin, in high conversion, enantiomeric excess (ee), and yield by biocatalytic asymmetric reduction of 2-bromo-1-(naphthalen-2-yl)ethanone (1) are still insufficient. Moreover, asymmetric reduction of substrate 1 using a mathematical optimization method is not explored in the current literature. In this article, the four asymmetric bioreduction conditions, which are (1) pH, (2) temperature, (3) incubation period, and (4) agitation speed, of substrate 1 were optimized to obtain (S)-2 with A-optimal design-embedded model in the presence of Enterococcus faecium BY48. Optimum bioreduction conditions were determined by the A-optimal design-embedded model as follows: pH = 7, temperature = 25°C, incubation period = 24 h, and agitation speed = 200 rpm. And then, it was suggested that (S)-2 could be obtained with 98.88% ee and 100% conversion rate (cr) under these optimum conditions. As a result of the experimental reaction performed under the optimization conditions suggested by the model, (S)-2 was obtained with 99% ee and 100% cr. The study revealed that E. faecium BY48 could be used as a biocatalyst in asymmetric reduction reactions. Also, the A-optimal design-embedded model could have the great potential to obtain the optimum asymmetric bioreduction conditions. © 2022 Wiley Periodicals LLC.

Citation

Akın Özdemir, Engin Şahin. Optimization of asymmetric reduction conditions of 2-bromo-1-(naphthalen-2-yl)ethanone by Enterococcus faecium BY48 biocatalyst with A-optimal design-embedded model. Chirality. 2022 May;34(5):796-806

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35218076

View Full Text