Clear Search sequence regions


  • adult (3)
  • child (1)
  • humans (1)
  • infant newborn (1)
  • peramivir (11)
  • Sizes of these terms reflect their relevance to your search.

    This study aims to determine the oxygenator impact on alterations of peramivir (PRV) in a contemporary neonatal/pediatric (1/4-inch) and adolescent/adult (3/8-inch) extra-corporeal membrane oxygenation (ECMO) circuit including the Quadrox-i® oxygenator. 1/4-inch and 3/8-inch, simulated closed-loop ECMO circuits were prepared with a Quadrox-i pediatric and Quadrox-i adult oxygenator and blood primed. Additionally, 1/4-inch and 3/8-inch circuits were also prepared without an oxygenator in series. A one-time dose of PRV was administered into the circuits and serial pre- and post-oxygenator concentrations were obtained at 5-min and 1-, 2-, 3-, 4-, 5-, 6-, 8-, 12-, and 24-h time points. PRV was also maintained in a glass vial, and samples were taken from the vial at the same time periods for control purposes to assess for spontaneous drug degradation. For the 1/4-in. circuit with an oxygenator, there was < 15% PRV loss, and for the 1/4-in. circuit without an oxygenator, there was < 3% PRV loss during the study period. For the 3/8-in. circuits with an oxygenator, there was < 15% PRV loss, and for the 3/8-in. circuits without an oxygenator, there was < 3% PRV loss during the study period. There was no significant PRV loss over the 24-h study period in either the 1/4-in. or 3/8-in circuit, regardless of the presence of the oxygenator. The concentrations obtained pre- and post-oxygenator appeared to approximate each other, suggesting there may be no drug loss via the oxygenator. This preliminary data suggests PRV dosing may not need to be adjusted for concern of drug loss via the oxygenator. Additional single and multiple dose studies are needed to validate these findings.

    Citation

    Jeffrey J Cies, Wayne S Moore, Daniel Marino, Jillian Deacon, Adela Enache, Arun Chopra. Oxygenator impact on peramivir in extra-corporeal membrane oxygenation circuits. Perfusion. 2023 Apr;38(3):501-506

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35225084

    View Full Text