Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

In the renin-angiotensin system (RAS), angiotensin II (AngII) converted by angiotensin converting enzyme (ACE) exerts a strong physiological activity via the AT1 receptor (AT1R). Thus, the ACE-AngII-AT1R axis positively regulates RAS. On the other hand, angiotensin converting enzyme 2 (ACE2) is known to negatively regulate RAS by degrading AngII into angiotensin 1-7 (Ang1-7). In the acute respiratory distress syndrome (ARDS), which is characterized by pulmonary hyperinflammation, the AngII-AT1R axis acts to exacerbate ARDS and the ACE2-AT2R axis acts protectively. More recently, ACE2 has been shown to be a receptor for SARS-CoV, the causative virus of severe acute respiratory syndrome (SARS), and SARS-CoV2, the causative virus of the 2019 coronavirus infection (COVID-19). Therefore, inhibition of the binding between ACE2 and virus spike protein is a drug discovery target for antiviral drugs against SARS-CoV and SARS-CoV2. In addition, when SARS and COVID-19 become severe, ARDS with cytokine storm is occured. We reported that soluble ACE2 protein and microbial-derived ACE2 like enzyme suppress pulmonary hyperinflammation due to SARS and COVID-19, respectively. In addition, it has been reported that the ACE2-soluble protein has an effect of suppressing the establishment of infection by inhibiting the binding between SARS-CoV2 and the cell membrane surface ACE2. Here, we describe the role of ACE2 in the pathophysiology of SARS/COVID-19 from the perspectives of inhibiting the progression to ARDS by suppressing pulmonary inflammation and suppressing the replication of the virus by inhibiting the binding of ACE2 to the spike protein.

Citation

Yumiko Imai. Role of ACE2 in COVID-19]. Nihon yakurigaku zasshi. Folia pharmacologica Japonica. 2022;157(2):115-118

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35228442

View Full Text