Correlation Engine 2.0
Clear Search sequence regions


  • agrobacterium (1)
  • cystatin (5)
  • hemiptera (1)
  • insect (2)
  • mammals (2)
  • nicotiana (1)
  • plant (9)
  • rna (1)
  • saliva (2)
  • Sizes of these terms reflect their relevance to your search.

    Arginine rich, mutated in early stage of tumours (Armet), is a well-characterized bifunctional protein as an unfolded protein response component intracellularly and a neurotrophic factor extracellularly in mammals. Recently, a new role of Armet as an effector protein mediating insect-plant interactions has been reported; however, its molecular mechanisms underlying the regulation of plant defences remain unclear. We investigated the molecular mechanisms underlying whitefly-secreted Armet-mediated regulation of insect-plant interaction by agrobacterium-mediated transient expression, RNA interference, electrical penetration graph, protein-protein interaction studies, virus-induced gene silencing assay, phytohormone analysis and whitefly bioassays. Armet, secreted by Bemisia tabaci whitefly, is highly expressed in the primary salivary gland and is delivered into tobacco plants during feeding. Overexpression of the BtArmet gene in tobacco enhanced whitefly performance, while silencing the BtArmet gene in whitefly interrupted whitefly feeding and suppressed whitefly performance on tobacco plants. BtArmet was shown to interact with NtCYS6, a cystatin protein essential for tobacco anti-whitefly resistance, and counteract the negative effects of NtCYS6 on whitefly. These results indicate that BtArmet is a salivary effector and acts to promote whitefly performance on tobacco plants through binding to the tobacco cystatin NtCYS6. Our findings provide novel insight into whitefly-plant interactions. © 2022 The Authors. New Phytologist © 2022 New Phytologist Foundation.

    Citation

    Hui Du, Hong-Xing Xu, Fang Wang, Li-Xin Qian, Shu-Sheng Liu, Xiao-Wei Wang. Armet from whitefly saliva acts as an effector to suppress plant defences by targeting tobacco cystatin. The New phytologist. 2022 Jun;234(5):1848-1862

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35238409

    View Full Text