Correlation Engine 2.0
Clear Search sequence regions


  • bacterial vaginosis (4)
  • biosynthesis (1)
  • female (1)
  • genomes (2)
  • humans (1)
  • iners (8)
  • inhibit (1)
  • lactobacillus (5)
  • suggest (1)
  • vagina (1)
  • women (4)
  • Sizes of these terms reflect their relevance to your search.

    Vaginal microbiota composition affects many facets of reproductive health. Lactobacillus iners-dominated microbial communities are associated with poorer outcomes, including higher risk of bacterial vaginosis (BV), compared with vaginal microbiota rich in L. crispatus. Unfortunately, standard-of-care metronidazole therapy for BV typically results in dominance of L. iners, probably contributing to post-treatment relapse. Here we generate an L. iners isolate collection comprising 34 previously unreported isolates from 14 South African women with and without BV and 4 previously unreported isolates from 3 US women. We also report an associated genome catalogue comprising 1,218 vaginal Lactobacillus isolate genomes and metagenome-assembled genomes from >300 women across 4 continents. We show that, unlike L. crispatus, L. iners growth is dependent on L-cysteine in vitro and we trace this phenotype to the absence of canonical cysteine biosynthesis pathways and a restricted repertoire of cysteine-related transport mechanisms. We further show that cysteine concentrations in cervicovaginal lavage samples correlate with Lactobacillus abundance in vivo and that cystine uptake inhibitors selectively inhibit L. iners growth in vitro. Combining an inhibitor with metronidazole promotes L. crispatus dominance of defined BV-like communities in vitro by suppressing L. iners growth. Our findings enable a better understanding of L. iners biology and suggest candidate treatments to modulate the vaginal microbiota to improve reproductive health for women globally. © 2022. The Author(s), under exclusive licence to Springer Nature Limited.

    Citation

    Seth M Bloom, Nomfuneko A Mafunda, Benjamin M Woolston, Matthew R Hayward, Josephine F Frempong, Aaron B Abai, Jiawu Xu, Alissa J Mitchell, Xavier Westergaard, Fatima A Hussain, Nondumiso Xulu, Mary Dong, Krista L Dong, Thandeka Gumbi, F Xolisile Ceasar, Justin K Rice, Namit Choksi, Nasreen Ismail, Thumbi Ndung'u, Musie S Ghebremichael, David A Relman, Emily P Balskus, Caroline M Mitchell, Douglas S Kwon. Cysteine dependence of Lactobacillus iners is a potential therapeutic target for vaginal microbiota modulation. Nature microbiology. 2022 Mar;7(3):434-450

    Expand section icon Mesh Tags

    Expand section icon Substances


    PMID: 35241796

    View Full Text