Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Serotonin receptor antagonist drug Ondansetron hydrochloride injectable formulation containing all related substances was identified and quantified by a single, simple, sensitive, eco-friendly, and green high-performance liquid chromatography method. The disseverment of all impurities was achieved with the Discovery Cyano (250 × 4.6) mm, 5 μm column. The gradient program was composed of pH 5.7 phosphate buffer as mobile phase A and acetonitrile as mobile phase B. The flow rate, column compartment temperature, and detection wavelengths were 0.9 mL/min, 30°C, and 216 nm, respectively. The method was validated as per current regulatory guidelines. The obtained %relative standard deviation for the precision results was between 0.55 and 2.72% for all impurities. The correlation coefficient values from the linearity experiment for impurities and analyte were more than 0.995. The accuracy results were obtained between 88.4 and 113.0% for all impurities. Both sample and standard solutions showed 24 h stability at benchtop and refrigerator conditions. All impurities and analytes met the specificity and mass balance for all forced degradation conditions. Quality-by-design-based design of experiments was utilized to establish the method's robustness. Method greenness was assessed by using the current advanced tool green analytical procedure index, National Environmental Methods Index, and analytical eco-scale. © 2022 Wiley-VCH GmbH.

Citation

Leela Prasad Kowtharapu, Naresh Kumar Katari, Christian A Sandoval, Siva Krishna Muchakayala, Vijay Kumar Rekulapally. Unique green chromatography method for the determination of serotonin receptor antagonist (Ondansetron hydrochloride) related substances in a liquid formulation, robustness by quality by design-based design of experiments approach. Journal of separation science. 2022 May;45(10):1711-1726

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35279949

View Full Text