Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Although there is growing evidence that benthic cyanobacteria represent a significant source of toxins and taste and odour (T&O) compounds in water bodies globally, water utilities rarely monitor for them. Benthic cyanobacteria grow in an array of matrices such as sediments, biofilms, and floating mats, and they can detach and colonize treatment plants. The occurrence of compounds produced by benthic species across matrix and climate types has not been systematically investigated. Consequently, there is a lack of guidance available to utilities to monitor for and mitigate the risk associated with benthic cyanobacteria. To assess toxin and T&O risk across climatic zones and provide guidance to water utilities for the monitoring of benthic mats, two field surveys were conducted across three continents. The surveys examined the occurrence of six secondary metabolites and associated genes, namely, geosmin, 2-methylisoborneol (MIB), anatoxin-a, saxitoxin, microcystin, and cylindrospermopsin, in benthic environmental samples collected across three climates (i.e., temperate, sub-tropical, and tropical) and a range of matrix types. Existing enzyme-linked immunosorbent assays (ELISAs) and qPCR assays and were used to measure compound concentrations and their associated genes in samples. A novel qPCR assay was designed to differentiate the production of MIB by actinobacteria from that of cyanobacteria. MIB occurrence was higher in warmer climates than temperate climates. Cyanobacteria in benthic mats were the major producers of taste and odour compounds. Floating mats contained significantly higher concentrations of geosmin and saxitoxins compared to other matrix types. Samples collected in warmer areas contained significantly more saxitoxin and cylindrospermopsin than samples collected in temperate climates. While these trends were mainly indicative, they can be used to establish monitoring practices. These surveys demonstrate that benthic mats are significant contributors of secondary metabolites in source water and should be monitored accordingly. Benthic cyanobacteria were the sole producers of T&O in up to 17% of the collected samples compared to actinobacteria, which were sole producers in only 1% of the samples. The surveys also provided a platform of choice for the transfer of methodologies and specific knowledge to participating utilities to assist with the establishment of monitoring practices for benthic cyanobacteria and associated secondary metabolites. Copyright © 2022. Published by Elsevier B.V.


Virginie Gaget, Husein Almuhtaram, Faith Kibuye, Peter Hobson, Arash Zamyadi, Eric Wert, Justin D Brookes. Benthic cyanobacteria: A utility-centred field study. Harmful algae. 2022 Mar;113:102185

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 35287926

View Full Text