Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Progressive degeneration of dopaminergic (DA) neurons in the substantia nigra is a hallmark of Parkinson's disease (PD). Dysregulation of developmental transcription factors is implicated in dopaminergic neurodegeneration, but the underlying molecular mechanisms remain largely unknown. Drosophila Fer2 is a prime example of a developmental transcription factor required for the birth and maintenance of midbrain DA neurons. Using an approach combining ChIP-seq, RNA-seq, and genetic epistasis experiments with PD-linked genes, here we demonstrate that Fer2 controls a transcriptional network to maintain mitochondrial structure and function, and thus confers dopaminergic neuroprotection against genetic and oxidative insults. We further show that conditional ablation of Nato3, a mouse homolog of Fer2, in differentiated DA neurons causes mitochondrial abnormalities and locomotor impairments in aged mice. Our results reveal the essential and conserved role of Fer2 homologs in the mitochondrial maintenance of midbrain DA neurons, opening new perspectives for modeling and treating PD. © 2022. The Author(s).

Citation

Federico Miozzo, Eva P Valencia-Alarcón, Luca Stickley, Michaëla Majcin Dorcikova, Francesco Petrelli, Damla Tas, Nicolas Loncle, Irina Nikonenko, Peter Bou Dib, Emi Nagoshi. Maintenance of mitochondrial integrity in midbrain dopaminergic neurons governed by a conserved developmental transcription factor. Nature communications. 2022 Mar 17;13(1):1426

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35301315

View Full Text