Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Alfalfa has the ability to degrade TNT. TNT exposure caused root disruption of mineral nutrient metabolism. The exposure of TNT imbalanced basal cell energy metabolism. The mechanism of 2,4,6-trinitrotoluene (TNT) toxicity effects was analyzed in alfalfa (Medicago sativa L.) seedlings by examining the mineral nutrition and secondary metabolism of the plant roots. Exposure to 25-100 mg·L-1 TNT in a hydroponic solution for 72 h resulted in a TNT absorption rate of 26.8-63.0%. The contents of S, K, and B in root mineral nutrition metabolism increased significantly by 1.70-5.46 times, 1.38-4.01 times, and 1.40-4.03 times, respectively, after TNT exposure. Non-targeted metabolomics analysis of the roots identified 189 significantly upregulated metabolites and 420 significantly downregulated metabolites. The altered metabolites were primarily lipids and lipid-like molecules, and the most significant enrichment pathways were alanine, aspartate, and glutamate metabolism and glycerophospholipid metabolism. TNT itself was transformed in the root system into several intermediate products, including 4-hydroxylamino-2,6-dinitrotoluene, 4-amino-2,6-dinitrotoluene, 2-hydroxylamino-4,6-dinitrotoluene, 2,4',6,6'-tetranitro-2',4-azoxytoluene, 4,4',6,6'-tetranitro-2,2'-azoxytoluene, and 2,4-dinitrotoluene. Overall, TNT exposure disturbed the mineral metabolism balance, and significantly interfered with basic plant metabolism. © 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Citation

Xu Yang, Jin-Long Lai, Yu Zhang, Xue-Gang Luo. Toxicity analysis of TNT to alfalfa's mineral nutrition and secondary metabolism. Plant cell reports. 2022 May;41(5):1273-1284

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35305132

View Full Text