Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

The binding channel of Schistosoma glutathione transferase (SGST) has been identified to possess a non-substrate site implicated in enzyme inhibition. This binding channel is formed by the interface of the GST dimer. We produced a comparative characterization of the SGST dimer interface with respect to that of human GST (hGST) analogues using the selective binding of bromosulfophthalein (BSP). First, two SGST and three hGST structures were used as search queries to assemble a data set of 48 empirical GST structures. Sequence alignment to generate a universal residue indexing scheme was then performed, followed by local superposition of the dimer interface. Principal component analysis revealed appreciable variation of the dimer interface, suggesting the potential for selective inhibition of SGST. BSP was found to dock invariably in the dimer interface core pocket, placing it in proximity to the GST catalytic domains, through which it may exert its inhibitory behavior. Binding poses across the GST forms were distinguished with ligand interaction profiling, where SGST complexes showed stabilization of ligand aromatic- and sulfonate moieties, which altogether anchor the ligand and produce a tight association. In comparison, missing aromatic stabilization in the hGST complexes impart large bonding distances, causing mobile poses likely to dissociate. Altogether, this study illustrates the potential for selective inhibition of SGST, rationalizes the selective behavior of the BSP inhibitor, and produces a reliable metric for construction and validation of pharmacophore models of the SGST binding channel. © 2022 Wiley Periodicals LLC.

Citation

Akeel Valli, Ikechukwu Achilonu. Comparative structural analysis of the human and Schistosoma glutathione transferase dimer interface using selective binding of bromosulfophthalein. Proteins. 2022 Aug;90(8):1561-1569

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35312105

View Full Text