Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Diabetic nephropathy (DN), one of microvascular complications of diabetes mellitus, results in renal dysfunction and end-stage renal disease. Recently, endothelial-to-mesenchymal transition (EndMT) was reported to mediate glomerular endothelial dysfunction, therefore, participating in the progress of fibrosis in DN. As a special type of epithelial-to-mesenchymal transition, EndMT and epithelial-to-mesenchymal transition may share corporate modulators. It was reported that epidermal growth factor (EGF), latrophilin and seven transmembrane domain containing 1 (ELTD1) and signal transducer and activator of transcription 5A (STAT5A) participate in epithelial-to-mesenchymal transition in some situations. In this work, we proposed that STAT5A participated in high glucose-mediated EndMT via modulation of ELTD1 levels in DN. Our data indicated that hyperglycemia/high glucose-induced ELTD1 and EndMT in DN rats and hyperglycemic human glomerular endothelial cells (HGECs). Additionally, high glucose mediated STAT5A nuclear translocation in HGECs. High glucose-mediated EndMT was reversed by ELTD1 silencing. Moreover, STAT5A was found to be elevated in DN rats and hyperglycemic HGECs. The effect of high glucose-mediated increase of ELTD1 expression and EndMT was reversed by STAT5A silencing in vitro. Further, STAT5A overexpression enhanced ELTD1 levels and EndMT, which was inhibited by si-ELTD1. Chromatin immunoprecipitation (ChIP) and luciferase assay represented that STAT5A directly regulated ELTD1 transcription. Signal transducer and activator of transcription 5A directly regulated ELTD1 transcription, therefore, participating in high glucose-mediated EndMT in glomeruli of DN. © 2022 John Wiley & Sons Australia, Ltd.

Citation

Ye Tian, Zhenhua Bi, Shuaina Ge, Bo Ye, Wenjie Han. STAT5A modulated EndMT via upregulation of ELTD1 expression in diabetic nephropathy. Clinical and experimental pharmacology & physiology. 2022 Jun;49(6):686-695

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35320597

View Full Text