Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Bile acids are important molecules that participate in digestion and regulate many host physiological processes, including metabolism and inflammation. Primary bile acids are biosynthesized from cholesterol in the liver, where they are conjugated to glycine and taurine before secretion into the intestines. A small fraction of these molecules remain in the gut, where they are modified by a microbial enzyme, bile salt hydrolase (BSH), which deconjugates the glycine and taurine groups. This deconjugation precedes all subsequent biotransformation in the intestines, including regioselective dehydroxylation and epimerization reactions, to produce numerous secondary bile acids. Thus, BSH is considered the gatekeeper enzyme of secondary bile acid metabolism, and, as a result, it controls the overall bile acid composition in the host. Despite the critical role that BSH plays in bile acid metabolism, there exist few tools to probe its activity in complex biological mixtures. In this chapter, we describe a chemoproteomic approach termed BSH-TRAP (bile salt hydrolase tagging and retrieval with activity-based probes) that enables visualization and identification of BSH activity in bacteria. Here, we describe application of BSH-TRAP to cultured bacterial strains and the gut microbes derived from mice. We envision that BSH-TRAP could be used to profile changes in BSH activity and identify novel BSH enzymes in complex biological samples, such as the gut microbiome. Copyright © 2022 Elsevier Inc. All rights reserved.

Citation

Bibudha Parasar, Pamela V Chang. BSH-TRAP: Bile salt hydrolase tagging and retrieval with activity-based probes. Methods in enzymology. 2022;664:85-102

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35331380

View Full Text