Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

Now in their 5th decade of research and development, conducting polymers represent an interesting class of materials to underpin new wearable or conformable electronic devices. Of particular interest over the years has been poly(3,4-ethylenedioxythiophene), commonly known as PEDOT, owing to its ease of fabrication and relative stability under typical ambient conditions. Understanding PEDOT from a variety of fundamental and applied perspectives is important for how it can be enhanced, modified, functionalised, and/or processed for use in commercial products. This feature article highlights the contribution of the research team at the University of South Australia led by Professor Evans, and their collaborators, putting their work into the broader context of conducting polymer research and application. This review focuses on the vapour synthesis of PEDOT doped with the tosylate anion, the benefits of controlling its morphology/structure during synthesis, and its application as an active material interacting with secondary anions in sensors, energy devices and drug delivery.

Citation

Drew R Evans. Understanding PEDOT doped with tosylate. Chemical communications (Cambridge, England). 2022 Apr 07;58(29):4553-4560

Expand section icon Mesh Tags

Expand section icon Substances


PMID: 35332350

View Full Text