Correlation Engine 2.0
Clear Search sequence regions


Sizes of these terms reflect their relevance to your search.

As blood oxygenation decreases (hypoxemia), mammals mount cardiorespiratory responses, increasing oxygen to vital organs. The carotid bodies are the primary oxygen chemoreceptors for breathing, but sympathetic-mediated cardiovascular responses to hypoxia persist in their absence, suggesting additional high-fidelity oxygen sensors. We show that spinal thoracic sympathetic preganglionic neurons are excited by hypoxia and silenced by hyperoxia, independent of surrounding astrocytes. These spinal oxygen sensors (SOS) enhance sympatho-respiratory activity induced by CNS asphyxia-like stimuli, suggesting they bestow a life-or-death advantage. Our data suggest the SOS use a mechanism involving neuronal nitric oxide synthase 1 (NOS1) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX). We propose NOS1 serves as an oxygen-dependent sink for NADPH in hyperoxia. In hypoxia, NADPH catabolism by NOS1 decreases, increasing availability of NADPH to NOX and launching reactive oxygen species-dependent processes, including transient receptor potential channel activation. Equipped with this mechanism, SOS are likely broadly important for physiological regulation in chronic disease, spinal cord injury, and cardiorespiratory crisis.

Citation

Nicole O Barioni, Fatemeh Derakhshan, Luana Tenorio Lopes, Hiroshi Onimaru, Arijit Roy, Fiona McDonald, Erika Scheibli, Mufaddal I Baghdadwala, Negar Heidari, Manisha Bharadia, Keiko Ikeda, Itaru Yazawa, Yasumasa Okada, Michael B Harris, Mathias Dutschmann, Richard J A Wilson. Novel oxygen sensing mechanism in the spinal cord involved in cardiorespiratory responses to hypoxia. Science advances. 2022 Mar 25;8(12):eabm1444


PMID: 35333571

View Full Text