Correlation Engine 2.0
Clear Search sequence regions

Sizes of these terms reflect their relevance to your search.

Breast cancer is the most common malignant tumor in females with high incidence and mortality. Actin-binding Rho activating C-terminal like (ABRACL) was highly expressed in several cancers. We aimed to investigate the function and mechanism of ABRACL in breast cancer. In this study, biological information analysis predicted the expression of ABRACL and MYB proto-oncogene-like 2 (MYBL2) in breast cancer tissues and their possible relationship. With the application of RT-qPCR and western blot, the mRNA and protein expression of ABRACL and MYBL2 in breast cancer cell lines were assessed. After ABRACL interference, an assessment of cell proliferation was carried out using cell counting kit (CCK)-8, colony formation, and western blot. The invasive and migratory abilities of cells were determined by transwell and wound healing assays. The epithelial-mesenchymal transition (EMT) process was assayed utilizing western blot. The relationship between ABRACL and MYBL2 was confirmed by luciferase reporter assay and chromatin immunoprecipitation (ChIP). The above experiments were done again after MYBL2 overexpression in breast cancer cells with ABRACL deletion. Results revealed that ABRACL and MYBL2 were highly expressed in breast cancer tissues and cells. ABRACL knockdown suppressed the proliferation, invasion, migration, and EMT of breast cancer cells. MYBL2 transcriptionally activated ABRACL. Besides, MYBL2 overexpression reversed the effects of ABRACL knockdown on cell malignant biological behaviors. To conclude, ABRACL could be transcriptionally regulated by MYBL2 to promote cell malignant biological behaviors in breast cancer cells, implying the potential of ABRACL being a promising target for the improvement of breast cancer therapy.


Jie Li, Hui Chen. Actin-binding Rho activating C-terminal like (ABRACL) transcriptionally regulated by MYB proto-oncogene like 2 (MYBL2) promotes the proliferation, invasion, migration and epithelial-mesenchymal transition of breast cancer cells. Bioengineered. 2022 Apr;13(4):9019-9031

Expand section icon Mesh Tags

Expand section icon Substances

PMID: 35341461

View Full Text